The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter.

نویسندگان

  • Mikihiro Fujiya
  • Mark W Musch
  • Yasushi Nakagawa
  • Shien Hu
  • John Alverdy
  • Yutaka Kohgo
  • Olaf Schneewind
  • Bana Jabri
  • Eugene B Chang
چکیده

Bacteria use quorum-sensing molecules (QSMs) to communicate within as well as across species. However, the effects of QSMs on eukaryotic host cells have received limited attention. We report that the quorum-sensing pentapeptide, competence and sporulation factor (CSF), of the Gram-positive bacterium Bacillus subtilis activates key survival pathways, including p38 MAP kinase and protein kinase B (Akt), in intestinal epithelial cells. CSF also induces cytoprotective heat shock proteins (Hsps), which prevent oxidant-induced intestinal epithelial cell injury and loss of barrier function. These effects of CSF depend on its uptake by an apical membrane organic cation transporter-2 (OCTN2). Thus, OCTN2-mediated CSF transport serves as an example of a host-bacterial interaction that allows the host to monitor and respond to changes in the behavior or composition of colonic flora.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.

We report a previously undescribed quorum-sensing mechanism for triggering multicellularity in Bacillus subtilis. B. subtilis forms communities of cells known as biofilms in response to an unknown signal. We discovered that biofilm formation is stimulated by a variety of small molecules produced by bacteria--including the B. subtilis nonribosomal peptide surfactin--that share the ability to ind...

متن کامل

Quorum Sensing in Microbial Virulence

Cell-to cell communication occurs via a signaling pathway referred to as quorum sensing. There are four main types of these systems according to the chemical nature of signal molecules used by microorganisms to elicit expression of target genes in response to environmental stimuli or need of microbial communities. Type I system acts by using acyl homoserine lactones as signals to trigger the ex...

متن کامل

Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity

Probiotics are live microorganisms that have beneficial effects on host health, including extended lifespan, when they are administered or present in adequate quantities. However, the mechanisms by which probiotics stimulate host longevity remain unclear and very poorly understood. In a recent study (Nat. Commun. 8, 14332 (2017) doi: 10.1038/ncomms14332), we used the spore-forming probiotic bac...

متن کامل

Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway

Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by ...

متن کامل

A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis.

Cell-to-cell communication in bacteria is mediated by quorum-sensing systems (QSS) that produce chemical signal molecules called autoinducers (AI). In particular, LuxS/AI-2-dependent QSS has been proposed to act as a universal lexicon that mediates intra- and interspecific bacterial behavior. Here we report that the model organism Bacillus subtilis operates a luxS-dependent QSS that regulates i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell host & microbe

دوره 1 4  شماره 

صفحات  -

تاریخ انتشار 2007